Quadratic programming on graphs without long odd cycles
نویسنده
چکیده
We introduce a quadratic programming framework on graphs (which incorporates MAXIMUM-CUT and MAXIMUM-INDEPENDENT-SET) and show that problems which are expressible in the framework can be solved in polynomial time on graphs without long odd cycles.
منابع مشابه
An Integer Programming Model and a Tabu Search Algorithm to Generate α-labeling of Special Classes of Quadratic Graphs
First, an integer programming model is proposed to find an α-labeling for quadratic graphs. Then, a Tabu search algorithm is developed to solve large scale problems. The proposed approach can generate α-labeling for special classes of quadratic graphs, not previously reported in the literature. Then, the main theorem of the paper is presented. We show how a problem in graph theory c...
متن کاملDIRECTED GRAPHS DEFINED BY ARITHMETIC (MOD n)
Let a and n > 0 be integers, and define G(a, ri) to be the directed graph with vertex set V{0,1,..., n -1} such that there is an arc from x to y if and only if y = ax (mod ri). Recently, Ehrlich [1] studied these graphs in the special case a = 2 and n odd. He proved that if n is odd, then the number of cycles in G(2, ri) is odd or even according as 2 is or is not a quadratic residue mod n. The ...
متن کاملA simpler proof for the two disjoint odd cycles theorem
We give a short proof of the two disjoint odd cycles theorem which characterizes graphs without two vertex-disjoint odd cycles. Our proof does not depend on any matroid result. It only uses the two paths theorem, which characterizes graphs without two disjoint paths with specified ends (i.e, 2-linked graphs).
متن کامل0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملOn the Kernelization Complexity of Problems on Graphs without Long Odd Cycles
Several NP-hard optimization problems, like Maximum Independent Set, q-Coloring, and Max-Cut are polynomial time solvable on bipartite graphs. An equivalent characterization of bipartite graphs is that it is the set of all graphs that do not contain any odd length cycle. Thus, a natural question here is what happens to the complexity of these problems if we know that the length of the longest o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008